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Abstract

Many disease processes can be divided into three stages: i.e. the non-diseased stage, the early
diseased stage and the fully diseased stage. To assess the accuracy of diagnostic tests for such
diseases, various summary indexes have been proposed, such as volume under the surface (VUS),
partial volume under the surface (PVUS), and the sensitivity to the early diseased stage given
specificity and the sensitivity to the fully diseased stage (/). This paper focuses on confidence
interval estimation for 2 based on empirical likelihood. Simulation studies are carried out to
assess the performance of the new methods compared to the existing parametric and non-
parametric ones. A real data set from Alzheimer’s Disease Neuroimaging Initiative (ANDI)? is
analyzed. Key Words: Empirical Likelihood; Diagnostic tests; The sensitivity to the early diseased
stage.
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1. INTRODUCTION

Disease process is usually divided into two stages: the non-diseased and the diseased, and
diagnostic tests are utilized to classify the subjects into different stages. The probability that
a non-diseased subject is correctly classified is defined as the specificity, and the probability
that a diseased subject is correctly identified is called sensitivity. When the outcome of
diagnostic test is continuous, both sensitivity and specificity are functions of the cut-off
value. As the cut-off value changes, sensitivity and specificity vary inversely to each other.
The Receiver Operating Characteristic (ROC) curve, a plot of sensitivity versus (1-
specificity) as the cut-off value runs through the whole range of all possible outcome values,
is a popular graphical assessment of the diagnostic accuracy for a diagnostic test. For
detailed review of statistical methods in ROC analysis, please see Shapiro (1999), Zhou et
al. (2002), Pepe (2003) and Zou et al. (2010).

2Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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To assess the diagnostic accuracy of a binary-scale test, there exist many diagnostic accuracy
measures such as the area under the curve (AUC). The AUC indicates the overall
performance of a diagnostic test for all the cut-off values. However, in medical practice, a
cut-off value is often chosen by medical practitioners so that a fixed value of specificity is
achieved (typically 80, 90, or 95 per cent). Hence, the sensitivity given the specificity serves
as a meaningful diagnostic measure. Towards this end, several papers discussed the issues of
estimation of sensitivity given specificity. For example, Greenhouse and Mantel (1950)
presented the inference procedures for a diagnostic test with continuous range, either with or
without normal distribution assumptions; McNeil and Hanley (1984) estimated the point-
wise confidence interval for sensitivity at a fixed specificity in the bi-normal model; Linnet
(1987) took into account the sampling variation of the discrimination limits and proposed
both parametric and non-parametric methods to construct the confidence interval; Platt et al.
(2000) recommended a confidence interval by using Efron’s bias-corrected acceleration
(BCa) bootstrap; and Zhou and Qin (2005) introduced two non-parametric confidence
intervals. Most recently, Qin et al. (2011) presented empirical likelihood-based confidence
intervals for the sensitivity at a fixed level of specificity.

In practice, a disease process might involve three ordinal diagnostic stages: the normal
healthy stage without even the earliest subtle disease symptoms, the early stage of the
disease, and the stage of full-blown development of the disease. For example, mild cognitive
impairment (MCI) and/or early stage Alzheimer’s disease (AD) is a transitional stage
between the cognitive changes of normal aging and the more serious AD. Recently, the
traditional ROC analysis has already been extended to three-stage cases, see e.g., Mossman
(1999), Dreiseitl et al. (2000), Heckerling (2001), Nakas and Yiannoutsos (2004), Xiong et
al. (2006), He and Frey (2008), Li and Zhou (2009), Nakas et al. (2010), Tian et al. (2010),
He et al. (2010), Dong et al. (2011) and Li et al. (2012). For diseases such as AD, early
detection is critical since it often means optimal time window for therapeutic treatment due
to the fact that no pharmaceutical treatments to-date are effective for the late stage AD.
However, it is far more challenging to diagnose subjects at the earliest disease stage for
clinicians because of the subtle clinical symptoms in the early stage of many complex
disease processes. Hence, the probability associated with the detection of early diseased
stage is critical in medical science and serves as a very important diagnostic accuracy
measure for diseases with three ordinal stages.

To be more specific, let Y7, Y2 and Y3 denote the test results for the non-diseased, the early
diseased, and the fully diseased group of a diagnostic test respectively, /1, / and 3 denote
corresponding cumulative distribution functions, and 7, /% and 3 denote sample sizes.
Assume that the test results are measured on a continuous scale and that higher values
indicate greater severity of the disease. Given a pair of threshold values ¢; and ¢, (¢; < &),
the subject is identified as non-diseased if the test result is smaller than ¢, as fully diseased
if the test result is larger than ¢, and as early diseased if the test result is between ¢; and ¢,.
The specificity A;, which is the correct classification rate for the non-diseased stage,
sensitivity to the early diseased stage A, and the sensitivity to the fully diseased stage P; are
defined as
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Pi=F(c1)
Py=Fj(ca) — Fa(c1)=F2[F3 (1 — P3)] — Fy[F{ ' (Py)]
P3:1 — Fg(CQ). (]_)

Given P, and P, ¢; and ¢, can be determined. Consequently, A, the sensitivity to the early
diseased stage given the specificity ~; and the sensitivity to the fully diseased stage A3, can
be formulated as a function of A, and A3, i.e. 2, = P(Py, P3) which also defines a surface in
the three-dimensional space (A, P, ), namely, the ROC surface. The point (P, Pz, P) =
(1, 1, 1) indicates the perfect discrimination ability.

To evaluate the diagnostic accuracy of the biomarkers for three-class diseases, various
summary measures of the ROC surface have been proposed. Among them, the volume under
the ROC surface (VUS), considered as the extension of AUC in the three-class disease
paradigm, is a very popular one. The VUS denotes the probability that a randomly chosen
subject from the non-diseased group, that from early diseased group and that from fully
diseased group follow simple order, i.e., VUS= A Y7 < Y, < Y3). More details about VUS
can be found in Nakas and Yiannoutsos (2004), Xiong et al. (2006), He and Frey (2008),
Wan (2012) and Kang and Tian (2013).

In addition to the overall performance of a biomarker measured by VUS, an accurate
estimate of 2 helps clinicians to identify the best disease markers for early diagnosis and
therefore the inference procedures for 2, are very useful. Dong et al. (2011) first attempted
to provide parametric and non-parametric confidence interval estimation methods for A.
However, the most recommended methods depend on either normality assumption or Box-
Cox transformation to normality. It is well known that not all of the non-normal distributions
can be transformed to normal via Box-Cox transformation. Therefore, some alternative
approaches for estimating the confidence interval of 72 which do not depend on
distributional assumption and also provide good coverage probabilities are worth exploring.

The goal of this paper is to present empirical likelihood-based confidence intervals for A5,
i.e. the sensitivity to the early diseased stage given specificity and the sensitivity to the fully
diseased stage. Empirical likelihood is introduced by Owen (1990, 2001) and has many
advantages over normal approximation-based methods. For instance, empirical likelihood-
based confidence regions are range preserving and transformation respecting, the regularity
conditions for empirical likelihood-based methods are weak and natural, and it utilizes the
power of likelihood-based approaches to solve complex statistical problems. The empirical
likelihood has been used widely in many applied areas including diagnostic tests with binary
outcomes, e.g., Claeskens et al. (2003) suggested a smoothed empirical likelihood-based
method (SEL) to estimate the sensitivity, and Qin et al. (2011) proposed two empirical
likelihood-based confidence intervals for the sensitivity at a fixed level of specificity. The
rest of this paper is organized as follows. Section 2 presents a review of existing methods. In
Section 3, the large sample properties of 7, and the empirical likelihood approaches are
proposed. In Section 4, simulation studies are conducted to evaluate the proposed methods.
In Section 5, a real data set from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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database is analyzed. Section 6 is the discussion. The proofs for the formula of the variance
for an estimator of 2 and the empirical likelihood theorem are given in the Appendix.

2. EXISTING METHODS

This section presents a brief review of the existing methods including the generalized
inference method and bootstrap approaches for confidence interval estimation of sensitivity
to the early diseased stage by Dong et al. (2011).

2.1. Generalized Inference Method

Assume Y;follows normal distributions with mean x;and variance o2 for /=1, 2, 3, the
generalized pivotal quantity for A as given in (1) can be written as

ths — RM2+(I)_1(1 — PB)RU3 _ (P[ Rﬂl 7 RM2+(I)_1(P1)R01
RUQ RO'Z

-

_ (n; —1)s? ,
where Bu.=7; — Zi \/Ro2/ni, Z;~ MO, 1) and floi= v, where Vi~ for j=

1,2, 3. By generating V;and Z;repeatedly, an array of Rp,’s can be obtained. A two-sided
100(1 - a)% generalized inference confidence interval for 7, Gl, is (Rpy(a/2), Rp,(1 -
al2)) where Rp,(a) denotes the 100ath percentile of Rp,.

When the normality assumptions are violated, the Box-Cox transformation is utilized as ~,
is invariant under monotonic transformations. Assume the data after transformation does
follow the normality assumptions, then the Gl method can be applied. Such confidence
interval is noted as BCGI hereafter.

2.2. Non-parametric Approaches

The A, as given in (1) can be non-parametrically estimated as

X
p.

(FTrP)<yi<F3t(1-Py))

ng 2

~b
With a bootstrap sample P, (6= 1 to 500), the 100(1 - a)% bootstrap percentile confidence
interval (BTP) can be obtained as

(Py(0/2), Pa(l —a/2))

where ﬁg(a) is the 100a% percentile. An adjusted estimator of A2, proposed by Agresti and
Coull (1998) is
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SUD D TP A - +Z%7a/2/2

Py [F7H(P)<Y;<FS T (1-Py)]

natzi_, A3)

where z;_ 4o stands for 100(1 — a/2)% percentile for standard normal distribution. The
100(1 - a)% BTI confidence interval is

= ——Dboot , = = ——boot , =
(szzl_a/Q Var " (P2), Patzi_q/2 \ Var (P2)>

where @bom (132) is the bootstrap estimate for the variance of 132 (more details can be

~ =b .
found in Dong et al. (2011)). Replacing p, with the mean P, obtained from the bootstrap
sample, the 100(1 - a)% BTII confidence interval is given as

— 1 =
<P2 —Z1_a2 V V‘LI" (PZ Pz—l—zl a2 V Var OOt(P2)> .

In Dong et al. (2011), through a simulation study, Gl and BCGI were shown to provide
accurate confidence intervals, given the corresponding normality assumptions were satisfied.
Otherwise, BT was recommended except in the scenarios with large 2 and small sample
sizes where BT P was preferred.

3. TWO NEW APPROACHES

In this section, two new methods for confidence interval estimation of 7, are presented.
Section 3.1 presents a method based on asymptotic normality and Section 3.2 presents two
confidence intervals based on empirical likelihood.

3.1. Normal Approximation-Based Confidence Interval

For the diagnostic tests with binary diagnostic outcomes, Linnet (1987) provided the
parametric formula for the variance of estimated sensitivity given the specificity, based on
which normal approximation-based confidence interval was constructed. Further details can
also be found in Zhou and Qin (2005) and Qin et al. (2011). Following the same vein, the

variance of ﬁz can be proven as (see Appendix 1)

2 _P(1-Py) P(-P) ‘fQQ[Ffl(Pl)]jLPs(l —P3) f3[F;'(1—Py)]
o M o fEECH(P)] ns fIET 1P ()
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where f;, £ and £ are the probability density functions for Y7, Y and Y3 respectively. It

can be shown that when r, m, and 15 are large, ﬁz has an approximately normal distribution
2 2
with mean A, and variance G%Q. The ng can be estimated as

- Py1-Py) P(L-P) [l (P)] P(1—Py) folEy (1 Py
02 = + P | + T2 A1
oM mo fIE(P) ™ fF(1-P)] (5

where Fl’l (P,) is the Pith sample quantile of Y3s, F;l (1 - P3) is the (1 — P3)th sample
quantile of Y3s, and f:is the kernel density estimate of 7;, /=1, 2, 3. We use the “over-
smoothed bandwidth selector” by Wand and Jones (1995) to select the bandwidth for the
Gaussian kernel function. The (1 — a)100% normal approximation-based confidence interval

<ﬁ2 — Z1-a/2 ,/Ui ; ?24'21—(1/2 \ [o2 >
PZ PZ

is referred as asymptotic parametric variance confidence interval (APV) hereafter.

3.2. Empirical Likelihood Confidence Interval

Define an indicator function ¢ as

1, X<Y<Z
1
s, X=Y<Z or X<Y=Z7
_) 2
HX.Y, Z2)= L X=y=z
0, otherwise.

Given P, and A3, for a test result Y of a subject from the early diseased group, define a
random variable

U=g[Fy ' (Py), Y. Fy (1 - Py)].

It is evident that

&
3
!

= E{QS[Fl_l(Pl)va F3_1(1 - PS)]}
= P[F7H(P)<Y<F;'(1- P3)]
}];[Fl_l(Pl)<Y < Fy'(1- B)

Based on this relationship between A~ and U, we can develop an empirical likelihood
procedure for making inference about A. Let p = (p,...,0p,) be a probability vector for the

early diseased group, and Z?;piil and p;= 0 for all /. The empirical likelihood for 2, can
be defined as
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PQ) =sup {sz szfl sz U; — P2 }

where U;=¢[ Fy Y (Py), Y, Fy '(1 — P3)}, F=1,2,...,m. Since U/'s depend on the unknown
distribution functlons F, and 3, we replace them by their empirical distributions £ and £,
and obtain a profile empirical likelihood for 2,

L(P,)=sup {sz > pi=1, sz i—P 0}

where Ui:¢[Ffl(P1),E,F;1(1 — P3)], /=1, 2,..., m. By the Lagrange multiplier method,
we can easily obtain the following expression for p;

p“izn%{HX(U,; - 132)}_1

where A is the solution of

n2

1+/\(U P ©)

no . n2 . . . 7
Note that Hizlpi, subject to Zj:lpi:l, attains its maximum 5, "> at p;=n; '. The profile
empirical likelihood ratio for A, is defined as

n2 n2

r(Po)=TT (o) =T[ {1+ ~ B)}

i=1 i=1
Hence the corresponding profile empirical log-likelihood ratio is
n2
I(P3) = —2 log r(P2)=2> log {1+\(U; — P»)}
=1 (7)
where A is the solution of (6).

Since the profile empirical log-likelihood ratio A/,) is a sum of dependent variables, its
asymptotic distribution is no longer a standard chi-square distribution. In the Appendix 2, it
is proven that A /2,) follows a scaled ;(2 distribution. The asymptotic distribution of A,) is
summarized in the following theorem.
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Theorem—Assume that /, /~ and F3 are continuous distribution functions, and the
density functions £, 5 and £ are positive and continuous at ¢; and . If 0 < pg =
limpy 00 My < 00,0 < pp =1iMp, pas00 MMM, < 00, and A, is the true value of the
sensitivity to the early diseased stage given specificity and the sensitivity to the fully
diseased stage, the limiting distribution of A /), defined by (7), is a scaled chi-square
distribution with one degree of freedom. That is,

() Z 3

Tp,py,Py

where the scale constant 75, p, p; is

P 2
with %i:P2(1 — P2) and 0%2 as given in (4).
In order to construct confidence interval for 2, based on the above Theorem, we need to

. 2 0'2 2 . =~ = .
estimate “;; and ~3,. The 95, can be estimated as P,1(—P,)and a Gaussian kernel was used

2
to obtain a parametric estimation of 0%2, as shown in (5). The 100(1 - a)% EL P confidence

interval for A2 is

Cla(Py)={ Py, . - U(P2) < x3(1—a)}

3
Py,Py,P3 D) . .
where na - 0%2 and y?(1 — «)is the (1 - a)th quantile of y2. The performance

of this EL P method highly depends on the density estimates from the Gaussian kernel,
whose bandwidth is chosen without a well recognized standard. Therefore, the following

7%2(1 —%2)

—

2
bootstrap approach is proposed to estimate 0%2 instead:

For 6= 1to B =500 bootstrap iterations,

Step 1: Draw re-samples of sizes m, /m, and 3 with replacement from the non-diseased
sample Yi/’s, the early diseased sample Y5/'s, and the fully diseased sample Y3;'s
respectively. Denote the bootstrap samples as {Yij’}, i=1,2,3,j=1,2,....nm

~b
Step 2: Calculate the bootstrap version of P, according to (2).

Step 3: The proposed bootstrap variance estimator for ﬁZ is defined as
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where 7, is defined in (2).

This leads to the second 100(1 — a)% empirical likelihood confidence interval (EL B) for 7,

Cla(Po)={Por}, - UP2) < X301 =)}

* _ Py(1 - Py)
TPy PPy —=b

where n2: ‘7%2 and (1 — «) is the (1 - a)th quantile of 2.

4. SIMULATION STUDIES

Simulation studies are carried out to compare the performance of the proposed empirical
likelihood confidence intervals EL P and EL B, as well as the asymptotic confidence interval
APV, with the existing ones, i.e. GI, BCGI, BTP, BTII proposed in Dong et al. (2011). As
BTI is always inferior than BT, it is not included in the tables.

We evaluate these approaches under the normal and beta distribution scenarios proposed in
Dong et al. (2011), to check whether the new approaches can give comparable performance
as the recommended GI/BCGI parametric approach where the normality assupmtions are
satisfied with or without Box-Cox transformation. In addition, we also investigated the
combined scenario where the normality assumptions cannot be met; that is, gamma for the
non-diseased, log-normal for the early diseased and Weibull for the fully diseased group.
The density functions for the combined distribution scenario are plotted in Figure 1. Sample
sizes (m, m, m) are set as (10, 10, 10), (30, 30, 30), (50, 30, 30), (50, 50, 50), (100, 100,
100), (100, 50, 50) and (100, 100, 50). With a fixed 80% specificity and a fixed 80%
sensitivity to the fully diseased stage, the parameters for the distributions are chosen
correspondingly so that 2, equals to 50% or 90%. Under each setting, 5,000 random
samples are generated. The simulation results are presented in Tables 1-3.

Table 1 presents simulation results under the normal distributions. The performance of the
newly proposed empirical likelihood confidence interval EL B is satisfactory in terms of
coverage probability although the EL B tends to be slightly conservative for the small sample
sizes. EL P performs well for 2, = 0.5 except at the sample size (10, 10, 10), but becomes
conservative when 2, =0.9. BT11 gives good estimates at 2 = 0.5, but when A, increases to
0.9, BTII obtains a 0.8956 coverage probability at the sample size 11 (10, 10, 10), which is
much lower than the 95% nominal level. In addition, as the sample size increases, BT
grows conservative. The BTP interval is generally conservative. The normal approximation-
based confidence interval APV is slightly conservative at small sample sizes. The
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generalized inference method Gl performs the best in the closeness of coverage probability
to the nominal level and the length of the confidence interval.

Table 2 presents simulation results for the beta distribution. The coverage probability of
EL B remains conservative for the small sample sizes at 2 = 0.5, however, when 7, = 0.9,
for the small sample size (10, 10, 10), EL B attains coverage probability which is very close
to the nominal level, and is even better than the BCGI approach. The other empirical
likelihood method EL P, yields satisfactory coverage probabilities when ~, = 0.5 except at
the sample size (10, 10, 10), while it is conservative for medium sample sizes when 2, = 0.9.
The non-parametric method BT11 is satisfactory at 2 = 0.5; while at 2, = 0.9, it changes
from being liberal to being conservative as sample sizes increase. The large sample method
APV is generally liberal when sample sizes are small. The generalized inference approach
with Box-Cox transformation is usually satisfactory, but it can be worse than EL B for a few
scenarios, such as (100, 100, 50) at 7, = 0.5 or (10, 10, 10) at A, =0.9.

In Table 3, the simulation results for the combined distribution are presented. For such cases,
the Box-Cox transformation fails to transform the data to the normal distributions.
Therefore, as expected, the performance of BCGI is unsatisfactory. Generally speaking, the
EL B method is close to the 95% nominal level except being slightly conservative at the
sample size (10, 10, 10). The EL P method provide reasonable coverage at 72, = 0.5 except
for the sample size (10, 10, 10). however, it becomes conservative for 7, = 0.9. BTII
maintains the nominal level for most cases except for the sample size (10, 10, 10), where the
coverage probability can be as low as 0.7848. In addition, for scenarios such as (100, 50, 50)
and (100, 100, 50), BTIl becomes more conservative than EL B. The BTP method is
generally conservative except at the sample size (10, 10, 10) when P, = 0.9. The asymptotic
approach APV remains liberal for most of the cases; 12 however, as the sample size
increases to (100, 100, 100), the coverage probability is very close to the 95% nominal level.

In summary, the GI method or the BCGI method work well for normal and beta
distributions, but becomes unusable for the combined distributions case, where the Box- Cox
transformation fails to work. The performance of APV is very unstable as it is slightly
conservative for the normal case and is generally liberal for the non-normal ones. The BTII,
for large A’s, is conservative under large unbalanced sample sizes and gives very liberal
estimates under small sample sizes. The BTP produces conservative confidence intervals for
most of the cases. The EL P performs well for scenarios with smaller A, but it turns out to
be conservative for the cases with higher 7. Finally, the proposed EL B method gives stable
confidence interval estimation with coverage probability close to the nominal level for
almost all cases, except that it can be slightly conservative under small sample sizes.
Therefore, overall speaking, the EL B method is highly recommended, especially for the
cases when normality assumptions are violated and Box-Cox transformation fails to work.

5. EXAMPLE

Alzheimer’s disease (AD) is the most common form of dementia, and it is one of the most
costly diseases for society in Europe and the United States. According to Wimo et al. (2013),
the total estimated worldwide costs of dementia were US$604 billion in 2010. About 70% of
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the costs occurred in western Europe and North America. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is a research project that is designed to validate the use of
biomarkers including blood tests, tests of cerebrospinal fluid, and MRI/PET imaging for
Alzheimer’s disease clinical trials and diagnosis. It aims to define the rate of progress of
mild cognitive impairment (MCI) and AD, to develop improved methods for clinical trials,
and to provide a large database which will improve design of clinical treatment trials.

In the ADNI database, there are many biomarkers to measure the disease progress of AD.
Here we use a small subset which includes ratio of levels of protein Tau and protein AB;
(TAU/ABETA), Fluoro Deoxy Glucose (FDG) and Alzheimer’s Disease Assessment Scale
(ADASL11) at the 24th month visit. The clinical dementia rating (CDR) denotes the severity
of dementia and a global CDR is derived from individual ratings in multiple domains by an
experienced clinician. CDR 0 indicates no dementia and CDR 0.5, 1, 2 and 3 represent very
mild, mild, moderate, and severe dementia, respectively. Since patients with large CDR such
as 2 or 3 are rarely available, patients with CDR greater than or equal to 1 are referred as the
fully diseased group. CDR 0 and 0.5 refer to the non-diseased group and the early diseased
group respectively. This subset contains 194, 290 and 183 subjects for the non-diseased, the
early diseased, and the fully diseased group respectively. Due to missing values, the actual
sample sizes for each variable may vary, as reported in Table 4. Figures 2 presents the
estimated kernel densities of the three disease groups for TAU/ABETA, FDG and ADAS11
respectively. By utilizing the Shapiro-Wilk’s normality test, TAU/ABETA is found to satisfy
the normality assumptions after the Box-Cox transformation; for FDG, the original data
meets the normality assumptions; and for ADAS11, the data either with or without the Box-
Cox transformation cannot achieve the normality assumptions for all three groups
simultaneously. Since the parametric assumptions are not met, GI/BCGI cannot be
rationally applied. Therefore, only the other methods are used to analyze this variable. Table
5 presents the estimated confidence intervals of A, for each variable. Under the
recommended EL B approach, ADAS11 achieves (0.4660, 0.6657) as its 95% confidence
interval for A, suggesting it gives a mediocre performance to diagnose the early stage AD
patients.

6. SUMMARY AND DISCUSSION

For disease processes with three ordinal stages, the sensitivity to the early diseased stage
given specificity and sensitivity to the fully diseased stage, 7, is considered as an important
diagnostic accuracy index, especially for early disease detection. The higher A,, the better
the diagnostic ability of the diagnostic test or biomarker for identifying the early diseased
stage. Therefore, an accurate estimation of the confidence interval for 2 will facilitate
investigators to identify the good biomarkers. This article proposes the EL B approach and
compares it with the existing confidence intervals. Simulation studies show that EL B not
only is more robust than parametric methods which heavily rely on the normality
assumptions, but also generally gives more accurate confidence intervals than non-
parametric methods, especially for unbalanced data sets. Therefore, the EL B method is
highly recommended in practice.
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For future work, following the same vein of Dong et al. (2014), we would like to develop the
semi-parametric inference procedure for the difference of two correlated A’s, based on the
empirical likelihood technique.
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APPENDIX 1: PROOF OF VARIANCE of P 2 in (4)
The asymptotic variance of %2 is shown in (4). The following is the proof.

Proof:

)
o)
V)

I

. {Var, [F2(61 <Y <@)+Var, o {Eﬁz[ﬁg(él <Y <)}

( 1.Co
_ Pz(Cl SV <éo)[1-Po(é1 <Y <é9)] N A 1.
= B { }+var5162[132(cl <Y < &)

ng

Asy Iy o and s, Ly ., and we assume A is continuous, so

{P2(61 <Y <&)l1-P(ée <Y < @2)]} P, Py(c1 <Y <e2)[1 = Pafer <Y < e2)] :P2(1 - P)

n2 n2 n2

Furthermore, since é; L &, we have

Var~ ~[Py(¢; <Y < &)

C1,C2

Val"g1 CAQ[FQ(CQ) — Fy(&1)]
Var/\[FQ(CZ)]+V3IA[F2(61)]
fz((CQ) Var(Cg)+f2 (CI) Var(é;)

= BB )+ DU e

ne

Pl-Fa) gy ul ().

n3-f3(ca) n1-f2(c1)

v

Hence
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APPENDIX 2: PROOF OF THEOREM IN SECTION 3

Proof:

By similar arguments used in Owen (1990), we can easily show that |\| =0, (n; /?)and
MaXxi<jem |U~ Pyl = O(1) as.. Then we have

I(P)

n2 ~ A
25 log {14+A(T; — Py)}
j=1

n2 A ~ 2
= 2 _Zl{)‘(Uj — Py) = 372(U; = Py) Y47,
1=

A

(U; — Py) ) < |3

12 =0, (n 1/2).

T'ngy ‘ < CZ"Z

From (6),

where

= P U, P2)+p 2—1/2)7

, Z L(T;—Py)
zlx(ﬁj —-P) = zlx(Uj — Py)+o,(1).
Jj= Jj=

Therefore,

I(P) = ZA(U — P2)+0p(1)

_ ‘[an U; Pz)]
- Z (U P) OP(l)
_ [\/TT(PZ 1D +op (1)

1
L3 (0 Py’

where ¢ is defined in (6) and A, is a three-sample statistic and

PO R | L1
Po=ood 6 [F1 (P, g, By (1= Py)].
j=1

N 2
From the previous proof and the central limit theorem, we know that [ V(P2 — PQ)] is

7”L2-O'2

asymptotically normal with the variance 7,- From the law of large numbers, we have

]. n2 2 P
n—QZ(Uj—PQ) = Var(U;).

It is easy to check
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1 na N 2 1 na 9 P
—N(U; -P)" = =S (U; — R)* =0
Therefore, by the Slutsky Theorem,
&z
Tppypy " Z(PQ) — X%
where the scale constant 7p; p, p; is
o?
_ Ui
TP1=P2J’3_n2 o2 ’
Py
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Scenario 1, P2=0.5
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Figure 1.
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Scenario 2, P2=0.9

—— Gamma (6, 12)
—— LN (1.5,0.5)
— Weibull (4, 12.5)

Biomarker

Density functions for the non-diseased, early diseased and fully diseased group for the two

simulation scenarios in Table 3.
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Figure2.
Estimated kernel densities for TAU/ABETA, FDG and ADAS11 in the ADNI data.
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